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This paper demonstrates the vortex shedding process behind a heated cylinder in a cross-flow at low Rey-
nolds numbers under the influence of thermal buoyancy. The simulations were performed using an
SUPG-based finite element technique. The range of Reynolds numbers was chosen to be 10–45. The flow
was steady in the absence of thermal buoyancy. The eddy length and the separation angle were computed
for the steady separated flow in the above range of Reynolds numbers. The results were in agreement
with those reported in the literature. The Nusselt number distribution around the heated cylinder was
also computed in the above range of Reynolds numbers for forced convective flows. The results compared
fairly well with available experimental results. The effect of superimposed thermal buoyancy in the same
range of Reynolds numbers was studied for various Richardson numbers. The steady separated flows
become unsteady periodic in the presence of superimposed thermal buoyancy. For the unsteady periodic
flows, the Strouhal numbers were computed. The separation angles and average Nusselt number for such
unsteady flows were found to vary with time.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The structure of the wakes behind bluff obstacles placed in a
channel at low Reynolds numbers has been a subject of consider-
able interest for several decades. The flow over a circular cylinder
has wide engineering relevance in various applications, such as
heat exchanger tubes, chimney stacks, cooling towers and offshore
structures. The most striking phenomenon during the flow past a
circular cylinder is vortex shedding. It happens when even a single
string or cylinder faces a flow of air or water. The Aeolian harp pro-
duces tones when wind blows through it and the chimneys oscil-
late in a breeze. The knowledge of heat transfer in the wake
plays a major role in the development of instruments using wires,
such as thermo elements and hot wire anemometers. The influence
of thermal buoyancy on the otherwise symmetric wake leads to
vortex shedding. The thermal buoyancy plays a role of paramount
importance on determining the wake behavior. A notable feature of
the superimposed thermal buoyancy is the induced oscillations in
the flow field leading to periodic variation of the spatial distribu-
tion of Nusselt number on the solid surface. The wake structure
is perturbed and the hydrodynamic instabilities grow even at small
Reynolds numbers when the wake is severely influenced by ther-
mal or solutal buoyancy. The change in wake length and separation
angle with a certain range of Reynolds numbers has been deter-
ll rights reserved.

: +91 512 2597408.
mined by many researchers, both experimentally and numerically
(see [1,2]).

Temperature field and heat transfer under forced convection
over a circular cylinder up to Reynolds number of 40 was studied
by Dennis et al. [3], Jafroudi and Yang [4] and Apelt and Ledwich
[5]. Oosthuizen and Madan [6] experimented with mixed convec-
tion effects in the range 100 � Re � 300. Badr [7] studied numeri-
cally laminar mixed convection heat transfer by considering the
flow direction both vertically upwards and downwards. Patnaik
et al. [8] studied laminar mixed convection heat transfer over sin-
gle and double cylinders by finite element simulation. Their work
alludes to the fact that the naturally occurring Karman Vortex
Street degenerates into a twined eddy pattern in the Reynolds
number range 41–200 under buoyancy-aided convection. Under
buoyancy-opposed convection, they found vortex shedding and
formation of twin eddies in a low Reynolds number range of 20–
40. Singh et al. [9] simulated mixed convective flow past a cylinder
in a vertical channel and found that at a Richardson number of 0.15
or more the shedding is stopped, leading to a situation of twin vor-
tices attached to a cylinder. Biswas et al. [10] studied unsteady
mixed convection heat transfer in a horizontal channel with a
built-in square obstacle. Their results show that the mixed convec-
tion can initiate periodicity and asymmetry in the wake at lower
Reynolds numbers, in contrast to forced convection alone. Wang
et al. [11] performed experimental investigations on laminar vor-
tex shedding for the flow around a heated cylinder. They derived
a new relationship between the wake frequency and the effective
Reynolds number. The separation angles for the flow behind a
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Nomenclature

D cylinder diameter
f vortex shedding frequency
g acceleration due to gravity
h heat transfer coefficient
Gr Grashof number ¼ gbðTw�T1ÞD3

m2

� �h i
Ls eddy length
ne total number of elements
Ni, Nm trial (also called shape/basis) functions
Nuh local Nusselt number on the cylinder surface
Nuh average Nusselt number over the cylinder surface
p non-dimensional pressure
Pr Prandtl number ð¼ m

aÞ
Re Reynolds number ð¼ qU1D

l Þ
Ri Richardson number ð¼ Gr

Re2Þ
t non-dimensional time
T temperature
u, v non-dimensional velocity components in x and y direc-

tions
U1 inlet velocity
W discontinuous weighting function for SUPG [Eq. (11)]
W continuous weighting function
Wsup g discontinuous streamline upwind contribution of

weighting functions
Wh finite element approximation to test function W

x, y non-dimensional coordinates

Greek
a thermal diffusivity of a fluid
b thermal expansion coefficient
l viscosity of a fluid
q density of a fluid
H non-dimensional temperature, i.e. T�T1

Tw�T1

� �
s time period for a complete cycle
m kinematic viscosity of the fluid
h angular location on the cylinder surface from the for-

ward stagnation point
hs separation angle
x vorticity
� quantity following the symbol is independent of inte-

grating variables

Subscripts
1 inlet condition
w wall

Superscripts
e element
h finite element approximations of a functions
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cylinder up to a Reynolds number of 280 were determined by Wu
et al. [12]. They developed an empirical relationship between the
separation angle and the Reynolds number in the range
7 � Re � 200. They also determined the effect of blockage on the
separation angle. Shi et al. [13] investigated the heating effect on
the flow and heat transfer in a two-dimensional laminar flow past
a circular cylinder. They considered the variation of fluid properties
with temperature in the range 0:001 � Re � 170. They further
interpreted the effect of various overheat ratios on the vortex shed-
ding frequency. Kieft et al. [14] analyzed the vortex shedding pro-
cess for the flow past a circular cylinder for a Reynolds number of
75 and a Grashof number range between 0 and 5000. They showed
that the vortices shed from the upper half of the cylinder are stron-
ger than those from the lower half.

In the present investigation, we simulated the flow and heat
transfer past a circular cylinder at a blockage ratio D/H = 0.05 for
the range 10 � Re � 45. The effect of thermal buoyancy was
brought about by the varying Richardson number. For the compu-
tational work, we introduced a segregated method of solution for
the incompressible Navier–Stokes and energy equations using a
SUPG (Streamline Upwind Petrov–Galerkin) based finite element
method (Maji and Biswas [15]). The algorithm is based on a predic-
tor–corrector approach that uses equal order interpolation func-
tions for velocity, pressure and temperature. The combined
effects of forced and natural convection were investigated. Local
Nusselt number distributions and isotherms were plotted under
forced convection for aforesaid range of Reynolds numbers and
compared with the results of Badr [7] and Dennis et al. [3].
2. Governing equations and solution methodology

The incompressible Navier–Stokes and energy equations in the
Cartesian coordinate system form the governing equations of the
flow. The buoyancy-driven flow from the heated surface interacts
with the laminar main flow to yield mixed convection conditions.
The dimensionless equations for continuity, momentum and
energy with the Boussinesq approximation may be expressed in
the following form:
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where Re ¼ qU1D
l is the Reynolds number, Ri ¼ gbDHD

U2
1
¼ Gr

Re2 is the
Richardson number, g is the acceleration due to gravity, Gr is the
Grashoff number and Pr ¼ m

a is the Prandtl number; which is taken
as 0.7 for the present computations. The fluid properties are de-
scribed by the thermal diffusivity a, the kinematic viscosity m and
the thermal expansion coefficient b. As to symbols, D is the length
scale and U1 is the velocity scale of the problem under consider-
ation. Conforming to a blockage ratio of 0.05, the corresponding dis-
tance between the top and bottom boundaries is 20D. Fig. 1 shows
the computational domain used in this investigation.

At the inlet, which is located at Xu = 10D upstream of the center
of the cylinder, a uniform flow was prescribed (u = 1,v = 0,H = 0).
At the outlet, which is located at Xd = 15D downstream of the cen-
ter of the cylinder a homogeneous Neumann boundary conditions
for the velocity components (u and v) and temperature (H) were
used. No-slip conditions were prescribed on the cylinder. At the
cylinder surface, uniform temperature (H = 1) was prescribed. At
the upper and lower confining walls, symmetry conditions simu-
lating a frictionless wall (ou/oy = v = 0) and zero heat flux (oH/
oy = 0) were used. The normal derivative of pressure was set to
zero on all boundaries except at the outlet where pressure equals
the local ambience and hence the Dirichlet condition was set.
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Fig. 1. Physical domain of interest with boundary conditions.

G. Biswas, S. Sarkar / International Journal of Heat and Mass Transfer 52 (2009) 1897–1912 1899
2.1. Solution methodology

To solve the governing equations numerically, a stable finite
element method was used. The Eulerian velocity correction ap-
proach based on the Projection scheme identical with the Marker
and Cell (MAC) method of Harlow and Welch [16] was used to
solve the governing equations for the mass, momentum and en-
ergy. An explicit time-stepping numerical technique with the
Streamline Upwind Petrov–Galerkin (SUPG) formulation (Brooks
and Hughes [17]) was adopted. This present work is an extension
of the earlier work of Maji and Biswas [15]. The method has been
successfully applied to solve complex problems (Prakash et al.
[18]; Kumar and Biswas [19]).

2.2. Finite element formulation

Eqs. (2) and (3) without the pressure term and Eq. (4) may be
represented as a single equation:
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Fig. 2. (a) Typical grid used for computation. (b) A
where U = {u,v,H} and SU is the source term, which is zero except
for the y-momentum equation. The term } represents Re and RePr
for momentum and energy equations, respectively.

Let X (geometry of interest) be a bounded region in R2 bounded
by the piecewise smooth boundary C. Let x = {x,y} denote the vec-
tor of spatial coordinate of a generic point in X and let t denote the
time value in the interval I = [0,T]. Let n! be the outward normal
vector to C and Cg;Ch as sections of C which satisfy the following:

Cg [ Ch ¼ C ð6Þ
Cg \ Ch ¼£ ð7Þ

The over-bar in Eq. (6) represents set closure and £ in Eq. (7)
denotes an empty set. In order to find a discrete solution of the
governing equations, we assume X is discretized into ne quadrilat-
eral elements such that

[ne

e¼1

Xe ¼ X
\ne

e¼1

Xe ¼£ ð8Þ

where Xe denotes the interior domain of an element. Let ðUh;phÞ be
an element of Sh and Wh be an element of Vh, where Sh and Vh are
finite dimensional subspaces of the trial (S) and test (V) spaces,
respectively, and are defined as

Sh ¼ ðUhÞ 2 ðC0ðXÞÞ6;Uh ¼ gU and ph ¼ s on C�g
n o

Vh ¼ Wh 2 C0ðXÞ;Wh ¼ 0 on C�g
n o

where C�g ¼ Cg, when U is specified and C�g ¼ Ch when pressure is
specified. gU and s are the Dirichlet boundary values. In the present
formulation an equal order interpolation is used for all unknowns.
The functions are of Lagrange type that belongs to class H1(X), i.e.
they are C0(X) continuous. Now the finite element method can be
formulated by requiring the discrete solution Uh to satisfy the weak
form of Eq. (5):
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where hU is the respective Neuman boundary condition of the
momentum and energy equations.
b

closer view of the grid around the cylinder.
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Table 1
Comparison of Ls values at Re values of 10–45.

Re Present calculation Takami and Keller [20] Dennis and Chang [21]

10 0.521 0.500 0.53
15 1.189 1.162 –
20 1.865 1.844 1.88
25 2.517 – –
30 3.226 3.223 –
35 3.793 – –
40 4.424 4.650 4.69
45 5.033 – –

Table 2
Comparison of hs values at Re values of 10–45.

Re Present calculation Takami and Keller [20] Dennis and Chang [21]

10 29.12 29.3 29.6
15 38.57 38.6 –
20 43.64 43.65 43.7
25 46.89 – –
30 49.29 49.6 –
35 51.35 – –
40 53.10 53.55 53.8
45 54.56 – –
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Let the finite set {Ni} represent basis functions for Sh and {Wi} be
the basis functions for Vh. The discrete solution Uh can be approx-
imated within each element as a linear combination of the trial
(basis) function. The expression for Uh is given as
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Uh ¼
XNp

m¼1

UðtÞgmNm ¼ fNgTfUðtÞ
n o

ð10Þ

where Np is the total number of nodes in each element. The formu-
lation has been documented in the work of Prakash et al. [18] and
Kumar and Biswas [19].

2.3. Streamline Upwind Petrov–Galerkin formulation

The numerical scheme based on standard Bubnov–Galerkin fi-
nite element method (GFEM) for convection–diffusion problems
produces a non-physical oscillatory solution when convection
dominates over diffusion. To overcome this problem, Brooks and
Hughes [17] introduced the Streamline Upwind Petrov–Galerkin
(SUPG) technique with the application of modified weighting func-
tions for all terms of the governing equations given by

Wh ¼Wh þWgh
sup ð11Þ

where Wh is a continuous weighting function and Wh
sup g is the dis-

continuous streamline upwind contribution. Both Wh and Wh
sup g

are assumed to be smooth on the element interiors. The above dis-
continuous test functions Wh

sup g introduce a corrective diffusion
which is highly anisotropic with a non-zero coefficient only in the
direction of the resultant element velocity vector calculated at the
geometric center of the element. This is to make this term active
only in the direction of the resultant element velocity and thereby
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effectively introduces upwinding in a multi-dimensional problem.
It should be noted that in the SUPG formulation, Wh

sup g weights only
in the element interiors. Also, the element coefficient matrix is mass
lumped. Incorporating all these concepts, Eq. (9) may be rewritten as
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where ne is the total number of elements in the domain X. Eq. (12)
allows us to compute the provisional value U at the new time step
in terms of the quantities at the previous time step value.

3. Grid generation and code validation

The computational domain is discretized into small curvilinear
four-noded elements. The grid is generated based on the multi-
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Table 3
Comparison of Nuh values at Re values of 10–45.

Re Present
calculation

Dennis et al.
[3]

Jafroudi and Yang
[4]

Apelt and Ledwich
[5]

10 1.8577 1.897 1.821 1.864
15 2.1809 – 2.176 2.193
20 2.4483 2.557 2.433 –
25 2.6802 – – –
30 2.8877 – 2.850 –
35 3.0772 – – –
40 3.2531 3.480 3.200 3.255
45 3.4178 – – –

Table 4
Reynolds numbers (Re) and the corresponding Richardson numbers (Ri) and Strouhal
numbers (St) signifying the onset of vortex shedding.

Re Ri St

10 1.400 0.05037
15 1.750 0.05750
20 1.750 0.05873
25 1.750 0.05900
30 1.800 0.05990
35 1.850 0.06044
40 1.950 0.06169
45 1.985 0.06197
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block technique using the transfinite interpolation (algebraic
method) further smoothed by a partial differential equation of
elliptic type. The velocity components, pressure and temperature
are collocated at each node of the element. A typical grid is shown
in Fig. 2(a). The grid is refined very fine around the cylinder
[Fig. 2(b)] and made a little coarse in the far field.

This SUPG-based finite element code has been tested satisfacto-
rily on a number of benchmark problems, such as the flow in a lid-
driven cavity, the flow over a backward-facing step and the flow in
a buoyancy-driven cavity. The results are presented elsewhere [18]
and they are found satisfactory. In the present investigation, the
algorithm was applied to a dynamic problem and results were ver-
ified. For a blockage of 0.05, computations were made with 17,952,
21,024 and 24,252 quadrilateral elements and 18,264, 21,360 and
24,614 nodes, respectively. The grid-independent situation was
achieved for 21,024 quadrilateral elements and 21,360 nodes.

Biswas et al. [10] investigated the influence of superimposed
thermal bouncy in a horizontal channel with built-in square cylin-
der. When the flow velocity is not very high and the temperature
difference between the body and the ambient fluid is large, the
flow characteristics are strongly influenced by the thermal buoy-
ancy. Their results showed that the buoyancy can initiate periodic-
ity and asymmetry in the wake at low Reynolds numbers for a
blockage 0.25. Therefore the influence of superimposed thermal
buoyancy on the bluff body wake is well understood for the higher
blockage. It is needed to investigate the flows using a lower block-
age in order to reduce the influence of confining surfaces. In the
present investigation we have used a blockage of 0.05 and it is
close to flow in infinite medium [2].

4. Results and discussion

4.1. Flow and heat transfer characteristics under forced convection

The finite element simulations were carried out for a range of
Reynolds number from 10 to 45. Results were obtained corre-
sponding to steady-state conditions. The wake structures were
studied from the streamlines plots. Fig. 3(a)–(h) show the stream-
lines for Reynolds numbers of 10, 15, 20, 25, 30, 35, 40 and 45.

The usual features of the flow field are revealed from these
plots. These features are the reflection symmetry of streamlines
about the centerline of the flow and the steady growth of the recir-
culation zone with the Reynolds number. Here, the important
parameters of interest are the eddy length and the separation an-
gle. Fig. 4 shows the typical bubble geometry of the flow, where
the eddy length Ls and separation angle hs have been defined.
The length of the eddy is the measure from the rear of the cylinder
to the wake stagnation point and the angle of separation is the an-
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gle measured from the rear stagnation point to the point on the
cylinder where the vorticity vanishes. The calculated lengths of
the eddies and angles of separation for the above-mentioned range
of Reynolds numbers were found to be in good agreement with the
numerical results of Takami and Keller [20] and are shown in
Tables 1 and 2.

It is evident from Table 1 that the eddy length increases linearly
with increasing Reynolds number over the range of interest. The
present calculations are also in close agreement with the results
obtained in other numerical studies by Dennis and Chang [21].

For the case of flow past a heated cylinder, the temperature con-
tours were obtained to investigate the effect of Reynolds number
on heat transfer. Fig. 5(a)–(h) show the isotherms around the
heated cylinder for Reynolds numbers of 10, 15, 20, 25, 30, 35,
40 and 45. The isotherms appear symmetrical about the line of
symmetry in the wake region.

Fig. 5(a)–(h) reveal that temperature contours becomes steeper
in the near-wake region with increasing Reynolds number. This
means that an increasing Reynolds number, signifying a higher
fluid velocity, sets a higher temperature gradient, leading to
enhanced heat transfer from the cylinder surface.

The quantitative parameter indicating heat transfer, i.e. the
local Nusselt number based on the cylinder diameter, is defined as

Nuh ¼ �
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where n denotes the direction normal to the cylinder surface and h
is the polar angle. The location h = 0 corresponds to the front stag-
nation point facing the incoming flow.

The local Nusselt number distribution for the present range of
Reynolds numbers was calculated and compared with the results
of Dennis et al. [3] and Badr [7] and there was good agreement.
Fig. 6(a) shows the local Nusselt number distribution over the
cylinder surface for the Reynolds numbers of 10 and 15. Similarly
Fig. 6(b) shows the local Nusselt number distribution for the
Reynolds numbers of 20 and 25. The predicted results due to pres-
ent computations for the Reynolds number of 20 compare quite
well with the investigations of Dennis et al. [3] and Badr [7]. The
local Nusselt number distribution over the cylinder surface for
the Reynolds numbers of 30, 35, 40 and 45 are summarized in
Fig. 6(c). In all the cases, it can be seen that the Nusselt number de-
creases gradually from the forward stagnation point to the rear
stagnation point. This trend of variation supports the fact that
maximum heat transfer is brought about at the forward stagnation
point and then the heat transfer decreases gradually along the cyl-
inder surface and finally the minimum value is reached at the rear
stagnation point. The local Nusselt number at any given h reveals a
higher value for higher Reynolds numbers.

The average Nusselt numbers Nuh were calculated for the Rey-
nolds numbers of interest and are given in Table 3. The results of
the present simulation show good agreement with the numerical
solutions of Dennis et al. [3], Apelt and Ledwich [5] and Jafroudi
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and Yang [4]. Table 3 shows that the average Nusselt number in-
creases monotonically with increase in Reynolds number.

4.2. Flow and heat transfer characteristics under superimposed
buoyancy-induced convection

The parameter that governs the buoyancy-induced effect is
indicated by the Richardson number Ri. We studied the situations
for 1:0 � Ri � 2:0 and the Reynolds numbers of interest are
10 6 Re 6 45. For the above range of Ri, the flow and the wake
zone dynamics are significantly influenced by the thermal buoy-
ancy, and vortex shedding is observed. The periodicity is character-
ized by the frequency of vortex shedding f. The dimensionless
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Fig. 12. Instantaneous contours of x and streamlines during vortex shedding cycle
at Re = 10 and Ri = 2.0.
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Fig. 13. Behavior of wake at Re = 45 and Ri = 1.0. (a) Contours of x;
vortex shedding frequency is expressed as fD
U1

, known as the Strou-
hal number (St). Where D is the diameter of the cylinder and U1 is
the free stream velocity. Table 4 shows the simulation results for
the Richardson numbers at which vortex shedding is first observed
for the present range of Reynolds numbers. The corresponding vor-
tex shedding frequencies, expressed as Strouhal numbers, are also
given.

The vortex shedding process is initiated by the formation of a
vortex blob at the downstream of the cylinder wake [14]. This for-
mation of a vortex blob occurs by the transportation of vorticity
produced in the vicinity of the cylinder surface to the cylinder near
wake. Green and Gerrard [22] described the vortex formation pro-
cess as a sequence of three interconnected stages. During the first
stage, the vorticity originating from the boundary layer accumu-
lates and produces a coherent vortex blob at the tip of the strand.
During the second stage, the vortex blob separates from the strand.
This separation of the vortex blob is brought about by the initiation
of a constriction process upstream of the strand tip, which trans-
forms into a region of coherent vortex structure (see Kieft et al.
[14]). It is assumed that at a Reynolds number of 10 and a Richard-
son number of about 1.4, a high shear rate develops in the constric-
tion area and causes this constriction process. The shear rate
causes dissipation of kinetic energy in the constriction area. The
advection and entrainment initiate this constriction phenomenon
(Green and Gerrard [22], Gerrard [23]). In the third and last stage,
the detached vortex blob from the constriction area moves down-
stream of the cylinder and vortex shedding starts. Here we define a
parameter c that describes vorticity accumulation and vortex
structure formation (Kieft et al. [14]). The parameter may be ex-
pressed as (also see Kieft et al. [24])

c ¼ 1
2
ðr2

1 þ r2
2 �x2Þ ð14Þ
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(b) isotherms; (c) streamlines; (d) close-up view of streamlines.
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where

r2 ¼
@v
@x
þ @u
@y

is the shear rate;

x ¼ @v
@x
� @u
@y

is the vorticity ð15Þ
and

r1 ¼
@u
@x
� @v
@y

ð16Þ

The quantitative value of c is calculated. If the quantity c be-
comes negative, the motion is said to be elliptical. However, a po-
sitive c corresponds to hyperbolic motion. In fact, Weiss [25]
showed that c < 0 indicates the elliptic regions signifying accumu-
lation of vorticity with increasing local circulation, whereas c > 0
indicates hyperbolic regions signifying stretching of vorticity that
prevents the growth of a coherent structure. Therefore in the ellip-
tic regions coherent vortex structures originate and in hyperbolic
regions the strain rate is dominant, causing stretching and defor-
mation of fluid elements.

It may be mentioned that the flow field may be described by

V ¼ ûiþ v ĵ ð17Þ

trA ¼ r:V ¼ @u
@x
þ @v
@y

and A ¼ rV ð18Þ

The parameter trA2 can be expressed as

trA2 ¼ 1
2
ðk~k�x2Þ ð19Þ

k ¼ r1 þ ir2 whereas ~k ¼ r1 � ir2 ð20Þ

k~k ¼ ðr1 þ ir2Þðr1 � ir2Þ ¼ r2
1 þ r2

2

k~k ¼ @u
@x
� @v
@y


 �2

þ @v
@x
þ @u
@y
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Fig. 14. Behavior of wake at Re = 45 and Ri = 1.985. (a) Contours of x
Therefore

k~k�x2 ¼ r2
1 þ r2

2 �x2 ð21Þ

Thus c may also be interpreted as trA2.
In the present investigation, the vortex shedding process under

the influence of buoyancy at low Reynolds numbers was analyzed
by calculating the contours of both x and c. Specifically for Ri = 2.0
and for the same Reynolds number range 10–45, the contours of x
and c for different time instants were calculated to identify the ef-
fect of buoyancy on vortex shedding. Also, the contours of stream-
lines and temperatures were obtained to visualize the effects of
high heating. The results are shown for Re = 10 and Re = 45 and
for different values of Ri.

4.3. Behavior of the wake under superimposed buoyancy at Re = 10

Depending on the magnitude of Ri the point of separation
moves towards the leading edge, causing an early separation. A
steady wake is found below Ri = 1.4 for Re = 10. Fig. 7(a–d) show
the steady-state solutions for Ri = 1.0.

From the streamlines plots in Figs. 3(a) and 7(d), it is found that
increasing Ri from zero to one results a decrease in the recircula-
tion bubble. A similar phenomenon was also observed by Badr [7].

Figs. 8(a–d) show the behavior of wake for Ri = 1.5 at Re = 10. At
this Ri the wake becomes unsteady and vortex shedding is ob-
served. The vortex structure formation process is described in Figs.
9(a–f) for Re = 10 and Ri = 2.0 with the iso-contours of x and c com-
puted at the vortex shedding cycle at three different time instants.

The shedding process starts with the generation of an upper
vortex blob identified by the stretching of the vorticity strand at
the upper cylinder shoulder, which is shown in Fig. 9(a). The tip
of the vorticity strand is located at an area where c < 0 [Fig. 9(b),
at x/D � 15.0 and y/D � 11.0]. Within that area, vorticity trans-
ported from the boundary layers, produced at the vicinity of the
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5

10

15

20

9 10 11 12 13 14 15 16 17
7

8

9

10

11

12

13

; (b) isotherms; (c) streamlines; (d) close-up view of streamlines.
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cylinder surface, is comparatively unaffected by shear stress and
finally leads to the formation of coherent structures. A local vortic-
ity extreme forms at the tip of the vorticity strand having an area of
strongly negative c [Fig. 9(c) and (d), at x/D � 19.0 and
y/D � 13.0]. The local vorticity extreme grows slowly and is grad-
ually convected in the downstream direction and the vorticity
strand that connects the local vorticity extreme with the boundary
layer starts to constrict between x/D � 13.0 and � 15.0 at
y/D � 11.0 and � 12.0 [Fig. 9(c) and (d)]. This constriction of the
vorticity strand occurs in an area of c > 0, [Fig. 9(d)] indicating a
dominant strain rate. In the later stages, the area where c > 0
rapidly increases and finally reaches its maximum value. At the
instant when the vorticity structure reaches its developed stage,
it becomes disconnected from the vorticity strand and moves due
advection downstream of the cylinder [Fig. 9(e)].

The shedding of the lower vortex starts one stage later than that
of the upper vortex [Fig. 9(e)]. Similarly to the upper vortex, the
lower vortex also sheds from the upper half of the cylinder shoul-
der. This is because of the effect of the high superimposed buoy-
ancy. The lower vorticity strand is stretched to the upper half of
cylinder shoulder where its tip is positioned within an area of
c < 0 [Fig. 9(a) and (b) at x/D � 11.0 and y/D � 11.5]. By comparing
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Fig. 15. Instantaneous contours of x for Re = 45 and Ri = 2.0 at (a) t, (c) t þ s
3, (e) t þ 2s
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3 (close-up view).
this area with that found during the generation of an upper vortex
[Fig. 9(b), (d) and (f)], the extreme value of c is found to be very
negative for the upper vortex. It is found from the simulations that
[Fig. 9(b), (d) and (f)] the size of the area occupied by c < 0 is higher
for the lower vortex than the upper vortex. This means that the
accumulation of vorticities for the formation of a lower vortex blob
takes place in a larger area and is highly affected by the strain rate.
That is why the local vorticity extreme developed at a later stage
during the formation process.

The formation of the shed structures from the upper side of the
cylinder differs from the one shed from the lower side. The results
show that due to the addition of thermal energy an asymmetry
arises between the formation process of an upper and lower vor-
tex. The upper vortices are formed closer to the cylinder compared
to the lower ones. The formation process of an upper vortex is less
influenced by strain. This finally culminates in the formation of
upper vortices which have a higher vorticity extreme and also have
a higher temperature. Fig. 9 suggests that while a lower vortex
forms and grows in size, due to buoyancy, a new structure with
positive vorticity is shed from the upper half region of the cylinder.

With the advection of vorticity, the thermal energy is advected
downstream of the cylinder. The geometric difference in the iso-
10 15 20

8

10

12

14

+ +

+

10 15 20

8

10

12

14

+

+

+

10 15 20

8

10

12

14

16

+

+

+

lose-up view). Instantaneous contours of c for Re = 45 and Ri = 2.0 at (a) t, (c) t þ s
3,



X

Y

10 12 14
8

10

12

X

Y

10 12 14
8

9

10

11

12

U

Y

0.5 1 1.5
0

5

10

15

20
Ri=1.0
Ri=1.5
Ri=2.0

U

Y

0.5 1 1.5
0

5

10

15

20
Ri=1.0
Ri=1.5
Ri=2.0

a b

c d

Fig. 16. Streamline pattern close to the cylinder for Re = (a) 10 and (c) 45 at Ri = 2.0 and u-velocity profiles at x = 10 for different Ri at Re = (b) 10 and (d) 45.

G. Biswas, S. Sarkar / International Journal of Heat and Mass Transfer 52 (2009) 1897–1912 1909
therms with vorticity is that in the former case only one strand of
isotherms connecting with the vicinity of the cylinder is found. The
sequence of transportation of thermal energy is shown by the plots
of isotherms as shown in Fig. 10(a–d). This process of transporta-
tion starts with the stretching of a hot strand of warm fluid, origi-
nating in the vicinity of the cylinder [Fig. 10(a)] into the cylinder
near wake. A local temperature extreme is found at the tip of the
strand. Gradually this extreme develops [Fig. 10(b)] in a confined
area and later the strand connecting the area with the cylinder
starts to constrict [Fig. 10(c)]. Finally, it is separated out and forms
an isolated hot blob which is convected downstream of the cylin-
der [Fig. 10(d)].

Fig. 11(a–d) show the instantaneous streamlines in a complete
vortex shedding period captured at time instants t; t þ s

4 ; t þ 2s
4 and

t þ 3s
4 .

Generation and advection of a recirculated zone are found dur-
ing the vortex shedding cycle near the upper boundary of the phys-
ical domain (see Fig. 11). The formation and advection process can
be explained in the following way. During the vortex shedding cy-
cle, the lower vortex sheds from the upper half of the cylinder
shoulder due to the effect of strong superimposed buoyancy. As
the Reynolds number is low, buoyancy dominates. Due to the
strong buoyant force, the shed vortex reaches the upper boundary
of the computational domain. Fig. 12 illustrates that the zone of
recirculating streamlines coincides with the shed vortex. Finally,
with the advection of that vortex, this recirculating zone also
moves out of the domain and the process continues. This recircu-
lating zone is observed only for Re = 10 and Re = 15 at Ri = 2.0.
4.4. Behavior of the wake under superimposed buoyancy at Re = 45

It is found that with increasing Reynolds number the effect of
buoyancy on the flow reduces and vortex shedding takes place at
a higher Richardson number. For a Reynolds number of 45, a steady
wake is found below a Richardson number of 1.985. Fig. 13(a–d)
show steady-state solutions for Ri = 1.0. Fig. 14(a–d) show the
behavior of wake for Ri = 1.985 at Re = 45. At this Ri, the wake be-
comes unsteady and vortex shedding is observed.

The formation of the vertical structure for a Reynolds number of
45 at Ri = 2.0 is shown in Fig. 15. The iso-contours of x and c are
computed at the time instants t; t þ s

3 and t þ 2s
3 during the vortex

shedding cycle. The formation process is the same as described ear-
lier for Re = 10 [Fig. 9(a–f)].

From Fig. 15(a–f), it is evident that the location of the zone of
constriction is larger than that of Re = 10 [Fig. 9(c) and (f)], which
is due to the effect of the larger Reynolds number. Here both vor-
tices are shed from the upper half of the cylinder shoulder.

4.5. Flow pattern around the cylinder

The transport of any quantity can be considered along the
streamlines when diffusion transport is neglected. The dashed
streamlines in Fig. 16(a) and (c) show the net amount of fluid
transported from the lower half of the wake into the upper half
for Re = 10 and Re = 45 at Ri = 2.0 close to the cylinder. High heat-
ing results in an upward drift of the streamlines in the wake zone
of the cylinder. The streamlines reveal that a net amount of fluid is
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transported from the lower half of the wake into the upper half.
This fluid transport is depicted by the dashed streamlines. Fluid be-
tween the cylinder and these streamlines first moves underneath
the cylinder but finally moves up in the upper half of the wake.
The mass conservation principle then demands transportation of
a large amount of fluid from underneath the cylinder, which is sup-
ported by the fact that with increasing Ri, the values of u-velocity
underneath the cylinder increases and its percentage increase is
more than that in the upper half, as shown in Fig. 16(b) and (d)
for Re = 10 and Re = 45, respectively, at x/D = 10.

4.6. Phase diagrams

Fig. 17(a and b) show phase diagrams for different Richardson
numbers at Reynolds numbers of 10 and 45, respectively. We have
already seen that for the combination of Richardson numbers and
Reynolds numbers the vortices are shed into the stream and the
flow field becomes periodic. These phase diagrams were con-
structed by plotting the temporal variation of the streamwise
velocity component at a sampling location 5D downstream of the
cylinder against the transverse velocity component at the same
location. At the sampling point, the transverse velocity component
dominates the streamwise velocity component. The phase dia-
grams clearly indicate the periodic nature of the flow.
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Fig. 19. Variation of Strouhal number with Richardson number for Re = (a) 10 and
(b) 45 during vortex shedding.
4.7. Vortex shedding frequency

Periodicity is induced in the flow field due to the vortex shed-
ding phenomenon. The periodicity is characterized by the Strouhal
number (St). Strouhal numbers were calculated for Re = 10 and
Re = 45 for various Richardson numbers in the shedding regime.
Fig. 18(a) and (b) show the transverse velocity signal and its FFT
(fast Fourier transform) captured at the sampling location 5D
downstream from the center of the cylinder for Re = 10 and
Re = 45, respectively, at Ri = 2.0.

Basically transverse velocity signals show the growth of the sig-
nal to saturation at that particular sampling location. The corre-
sponding FFTs show the decadic logarithm of the modulus of the
Fourier transform of the transverse velocity as a function of Strou-
hal number. The local peaks of the FFT curve confirm the presence
of different harmonics in the velocity signal.

Fig. 19(a and b) show the variation of St for Re = 10 and Re = 45,
respectively, for different Ri. The shedding frequency is observed to
increase with increase in Ri. The trend of variation of St for Re = 10
is similar to those reported by Patnaik et al. [26].

Fig. 20 shows the variation of Strouhal number as a function
of Reynolds number for a fixed Richardson number of 2. It is
clear that shedding frequency increases sharply with increase
in Reynolds number up to Re = 25 and thereafter it reduces until
a Reynolds number of 40. The frequency increases marginally
Re = 40.

4.8. Periodic characteristics of separation angle (hs) and average
Nusselt number ðNuhÞ

It is found that during the vortex shedding cycle, the separation
angle and the average Nusselt number calculated at the cylinder
surface vary at each instant. Fig. 21(a and b) show the variations
of separation angle and the average Nusselt numbers at Re = 45
for Ri = 2.0. It is found that the vortex shedding frequency at that
particular Ri is same as the frequency of variation of the separation
angle and the average Nusselt number for those Reynolds num-
bers. The trend of variation of the separation angle is similar to that
reported by Wu et al. [12]. Wu et al. [12] have shown that the value
of hs decreases with increasing Reynolds number. However, the
variation in hs values increases significantly as the Reynolds num-
ber increases beyond the critical Reynolds number. In the present
study the variation in hs is brought about as the Richardson num-
ber increases beyond the critical Richardson number.
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5. Conclusions

The segregated SUPG-based finite element approach is an effi-
cient numerical tool to solve complex flows with much reduced
computational effort. The streamline upwinding minimizes cross-
wind diffusion. The consistent Petrov–Galerkin weighted residual
formulation proves to be key feature for the success of this method.
A numerical investigation was carried out to study the flow and
heat transfer behavior past a circular cylinder in the range of Rey-
nolds numbers 10–45 under varying thermal buoyancy. In the ab-
sence of thermal buoyancy, the separation angle and the eddy
length increase with increasing Reynolds number. The predicted
results match well with those available in the literature. During
forced convection, the maximum heat transfer occurs at the front
stagnation point and decreases to a minimum at the rear stagna-
tion point. The average Nusselt number also increases with
increasing Reynolds number and the predicted results are in con-
formity with well-known experimental observations. This study
confirms that the characteristics of the steady wake downstream
of a cylinder can be altered by superimposed thermal buoyancy.
Under the influence of superimposed thermal buoyancy, the flow
becomes unsteady periodic. The thermal buoyancy brings about
asymmetry in the wake and induces unsteadiness. Beyond some
critical value of Ri for a given Reynolds number, vortex shedding
starts. For Re = 10 vortex shedding is observed at Ri = 1.4 and for
Re = 45 vortex shedding starts at Ri of 1.985. The vortex shedding
cycles were described at Ri = 2.0 with the help of iso-contours of
vorticity, x and a parameter c that indicates the vorticity accumu-
lation and vortex structure formation. It is also found that the
Strouhal number varies with Ri and Re. The separation angle (hs)
and average Nusselt number ðNuhÞ are found to be influenced by
the vortex shedding. The separation angle (hs) and the average
Nusselt number ðNuhÞ oscillate with the frequency of the shedding.
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